If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+100x-60=0
a = 4; b = 100; c = -60;
Δ = b2-4ac
Δ = 1002-4·4·(-60)
Δ = 10960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10960}=\sqrt{16*685}=\sqrt{16}*\sqrt{685}=4\sqrt{685}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{685}}{2*4}=\frac{-100-4\sqrt{685}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{685}}{2*4}=\frac{-100+4\sqrt{685}}{8} $
| 106/x+10=32 | | -413.4=-15.9a | | 2.5x+.25=1.75+x | | 5/2x+1/4=7/4+x | | 5x+60=12 | | 5w^2=14w+8 | | 106/10x=32 | | 5/2x+1/4=7/4+4 | | 1a-6=8-(9+1a) | | 18-9h=9-3h | | (x-3/5)(-3x/10)=7 | | 2(x+3)x=3 | | -3(2y-6)=36 | | 5y-5+y+35=7y+30-3y | | .25(32b-80)-4=7b+10 | | 2(x+1)=2(3x-1) | | 1/7/x=14 | | 4(4-w)=3(2w+w) | | 6-6n+4n=14-38 | | O.75a=-9 | | -4(2)+8x=64 | | 4x+9=81 | | 13x-12-23x=-17 | | 4+19s-1=9s+54-7 | | 36=-1y | | -2(-3)-5y=24 | | 4.175/6=x | | K=5x=1.5 | | X^2-3x=-2+2x | | x+12+12x=18 | | (4.175/6)*100=x | | -b+7=14+4b-1 |